高中数学立体几何一直是数学的一大难点。因为它要求学生有立体感,在一个平面内把几何图形的立体感想象出来。今天小编整理了一些高考数学几何题解题技巧,希望对大家有帮助。
高考数学几何题解题技巧:
1.几何题,就一定有图,所以首先是读题看图,把已知的和未知的在图中标记出来
2.结合问题进行推导,有的可以直接推导出来,有的比较隐蔽需要不断尝试
3.数形结合,把未知和已知联系起来,如果遇到需要构造的,画辅助线,多尝试,找到最合适的辅助线
4.其实题目都是有套路的,要多做同类题,然后通过类比,也许做几道就可以解决很多道题,多总结错题,久了就会发现很容易的。
技巧一:
第一,熟悉基本的概念,公理,定理,以及各种推论,最好多做不同类型的练习题,加深映象和理解,了解各定理和推论的各种变式以及各自的应用范围。
第二,立体几何里面有一些特殊的关系式,比如正弦定理,余弦定理,海伦公式,二面角的四角公式等等,这些都是被证明了的恒等式,平时注意记忆和运用。
第三,几何是一门以一些已知关系求取一些未知关系之间的关系的学科,所以作辅助线就显得很重要,主要是直观,因为有时候关系多了记不住,就要把他标记下来,所以要多多思考怎样作辅助,需要什么辅助线才能达到目的。
第四,经常思考,想明白各种定理、推论之间的关系,各种变化的由来以及用处,真正融会贯通,自然信手拈来。说到底,现在学习的都是前人证明了的各种逻辑关系式,我们只不过学习并运用而也,就是要靠记忆,理解,运用了,基础最重要,所有复杂的东西都是由最基本的东西组成的,最基本的搞清楚了,复杂的东西自然就会了。
技巧二:
1.首先,高中的立体几何大致有一定的分类,求最值,求角度,求角度的余弦值等,题型上分为选择填空和大题。
2.求角度问题上,一个方法就是通过在面或是线上作垂线来构造直角三角形,合理运用三垂线定理,这个方法需要很好的观察能力和几何想象能力。
3.在求最值问题上,往往要结合函数,通过设某一条边或是某一个夹角来求出其他未知量,构造二次或者多次函数来求出几何图形的一些最值。
4.还可以运用空间坐标来求解,通过写出各个点的坐标,求出面的法向量,最后用向量来求夹角,这个方法比较简单粗暴,一般来说基本能搞定所有的立体几何问题,不过缺点是计算太烦,容易出错。