寻路问学,尽在路问 - 路问教育(www.luwen.cn)欢迎您! 全国客服电话: 400-0909-044 网站导航 培训机构 中职学校 国际学校 平台介绍 招生合作 平台客服 公众号 公众号 扫描二维码关注公众号 路问培训网首页
当前位置: 路问培训网 高考 知识点 对口高考数学数列知识点

对口高考数学数列知识点

栏目:知识点 发布时间:2023-10-19 10:56 来源: 路问教育 阅读量:9

对口高考数学数列知识点

数列的相关概念

①数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。

②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a、列表法;b、图像法;c、解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。

③函数不一定有解析式,同样数列也并非都有通项公式。

等差数列通项公式

an=a1+(n—1)d

n=1时a1=S1

n≥2时an=Sn—Sn—1

an=kn+b(k,b为常数)推导过程:an=dn+a1—d令d=k,a1—d=b则得到an=kn+b

等差中项

由三个数a,A,b组成的等差数列可以堪称最简单的等差数列。这时,A叫做a与b的等差中项(arithmeticmean)。

有关系:A=(a+b)÷2

前n项和

倒序相加法推导前n项和公式:

Sn=a1+a2+a3+·····+an

=a1+(a1+d)+(a1+2d)+······+[a1+(n—1)d]①

Sn=an+an—1+an—2+······+a1

=an+(an—d)+(an—2d)+······+[an—(n—1)d]②

由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n个)=n(a1+an)

∴Sn=n(a1+an)÷2

等差数列的前n项和等于首末两项的和与项数乘积的一半:

Sn=n(a1+an)÷2=na1+n(n—1)d÷2

Sn=dn2÷2+n(a1—d÷2)

亦可得

a1=2sn÷n—an=[sn—n(n—1)d÷2]÷n

an=2sn÷n—a1

有趣的是S2n—1=(2n—1)an,S2n+1=(2n+1)an+1

数列求和

等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。

基本概念:

首项:等差数列的第一个数,一般用a1表示;

项数:等差数列的所有数的个数,一般用n表示;

公差:数列中任意相邻两个数的差,一般用d表示;

通项:表示数列中每一个数的公式,一般用an表示;

数列的和:这一数列全部数字的和,一般用Sn表示.

基本思路:

等差数列中涉及五个量:a1 ,an, d, n, sn,,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。

基本公式:通项公式:an = a1+(n-1)d;

通项=首项+(项数一1) 公差;

数列和公式:sn,= (a1+ an)n2;

数列和=(首项+末项)项数2;

项数公式:n= (an+ a1)d+1;

项数=(末项-首项)公差+1;

公差公式:d =(an-a1))(n-1);

公差=(末项-首项)(项数-1);

关键问题:确定已知量和未知量,确定使用的公式;

高中数学报名、考试、查分免费提醒 申请试听课程
我已阅读并接受《用户协议》《隐私政策》

路问招生网是全国培训机构、中专、职业学校、技校、中职学校、单招、中考、高考、国际学校等招生信息的查询平台。

品牌故事
路问教育由深耕教育行业20年的团队创办,“路问”商标于2011年获国家商标局正式批复并成功注册。
路问

关注路问招生公众号
招生学校 、专业查询
政策、报考尽在掌握

Copyright © 2011 路问招生网版权所有 备案编号:川公网安备 51019002004404号 蜀ICP备2021024436号-1
取 消 发送